On the divisors of infinitely divisible distributions admitting a Cartesian product representation
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 772-777
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n$-dimensional ($n\ge 2$) infinitely divisible distribution $P$ admits a representation in the form of Cartesian product of one-dimensional distributions. Let $P$ be also a convolution of two $n$-dimensional distributions $Q$ and $S$. We study the conditions under which the distributions $Q$ and $S$ must be the Cartesian products too.
@article{TVP_1982_27_4_a11,
author = {I. V. Ostrovskiǐ},
title = {On the divisors of infinitely divisible distributions admitting {a~Cartesian} product representation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {772--777},
year = {1982},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/}
}
TY - JOUR AU - I. V. Ostrovskiǐ TI - On the divisors of infinitely divisible distributions admitting a Cartesian product representation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 772 EP - 777 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/ LA - ru ID - TVP_1982_27_4_a11 ER -
I. V. Ostrovskiǐ. On the divisors of infinitely divisible distributions admitting a Cartesian product representation. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 772-777. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/