On the divisors of infinitely divisible distributions admitting a~Cartesian product representation
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 772-777
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n$-dimensional ($n\ge 2$) infinitely divisible distribution $P$ admits a representation in the form of Cartesian product of one-dimensional distributions. Let $P$ be also a convolution of two $n$-dimensional distributions $Q$ and $S$. We study the conditions under which the distributions $Q$ and $S$ must be the Cartesian products too.
@article{TVP_1982_27_4_a11,
author = {I. V. Ostrovskiǐ},
title = {On the divisors of infinitely divisible distributions admitting {a~Cartesian} product representation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {772--777},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/}
}
TY - JOUR AU - I. V. Ostrovskiǐ TI - On the divisors of infinitely divisible distributions admitting a~Cartesian product representation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 772 EP - 777 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/ LA - ru ID - TVP_1982_27_4_a11 ER -
%0 Journal Article %A I. V. Ostrovskiǐ %T On the divisors of infinitely divisible distributions admitting a~Cartesian product representation %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 772-777 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/ %G ru %F TVP_1982_27_4_a11
I. V. Ostrovskiǐ. On the divisors of infinitely divisible distributions admitting a~Cartesian product representation. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 772-777. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/