On the divisors of infinitely divisible distributions admitting a~Cartesian product representation
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 772-777

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$-dimensional ($n\ge 2$) infinitely divisible distribution $P$ admits a representation in the form of Cartesian product of one-dimensional distributions. Let $P$ be also a convolution of two $n$-dimensional distributions $Q$ and $S$. We study the conditions under which the distributions $Q$ and $S$ must be the Cartesian products too.
@article{TVP_1982_27_4_a11,
     author = {I. V. Ostrovskiǐ},
     title = {On the divisors of infinitely divisible distributions admitting {a~Cartesian} product representation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {772--777},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/}
}
TY  - JOUR
AU  - I. V. Ostrovskiǐ
TI  - On the divisors of infinitely divisible distributions admitting a~Cartesian product representation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 772
EP  - 777
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/
LA  - ru
ID  - TVP_1982_27_4_a11
ER  - 
%0 Journal Article
%A I. V. Ostrovskiǐ
%T On the divisors of infinitely divisible distributions admitting a~Cartesian product representation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 772-777
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/
%G ru
%F TVP_1982_27_4_a11
I. V. Ostrovskiǐ. On the divisors of infinitely divisible distributions admitting a~Cartesian product representation. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 772-777. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a11/