On a~density estimation within a~class of entire functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 514-524
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,\dots,X_n$ be i. i. d. random variables with values in $R^k$ and $p(x)$ be their density. Denote by 
$\Sigma(\mathbf K)$ the class of density functions such that their characteristic functions have symmetric compact support $\mathbf K$. For an arbitrary estimator $T_n(x)$ consider a function
$$
\Delta_n^2(T_n,p)=\mathbf E_p\|T_n-p\|_2^2,
$$
where $\|\cdot\|_2$ is the $\mathscr L_2$-norm, $\mathbf E_p(\cdot)$ is the expectation with respect to the measure generated by $X_1,\dots,X_n$. We prove the equality
$$
\lim_{n\to\infty}[n\inf_{T_n}\sup_{p\in\Sigma(\mathbf K)}\Delta_n^2(T_n,p)]=\frac{\operatorname{mes}\mathbf K}{(2\pi)^k}
$$
and some related results.
			
            
            
            
          
        
      @article{TVP_1982_27_3_a8,
     author = {I. A. Ibragimov and R. Z. Has'minskiǐ},
     title = {On a~density estimation within a~class of entire functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {514--524},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/}
}
                      
                      
                    TY - JOUR AU - I. A. Ibragimov AU - R. Z. Has'minskiǐ TI - On a~density estimation within a~class of entire functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 514 EP - 524 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/ LA - ru ID - TVP_1982_27_3_a8 ER -
I. A. Ibragimov; R. Z. Has'minskiǐ. On a~density estimation within a~class of entire functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 514-524. http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/
