On a~density estimation within a~class of entire functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 514-524

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be i. i. d. random variables with values in $R^k$ and $p(x)$ be their density. Denote by $\Sigma(\mathbf K)$ the class of density functions such that their characteristic functions have symmetric compact support $\mathbf K$. For an arbitrary estimator $T_n(x)$ consider a function $$ \Delta_n^2(T_n,p)=\mathbf E_p\|T_n-p\|_2^2, $$ where $\|\cdot\|_2$ is the $\mathscr L_2$-norm, $\mathbf E_p(\cdot)$ is the expectation with respect to the measure generated by $X_1,\dots,X_n$. We prove the equality $$ \lim_{n\to\infty}[n\inf_{T_n}\sup_{p\in\Sigma(\mathbf K)}\Delta_n^2(T_n,p)]=\frac{\operatorname{mes}\mathbf K}{(2\pi)^k} $$ and some related results.
@article{TVP_1982_27_3_a8,
     author = {I. A. Ibragimov and R. Z. Has'minskiǐ},
     title = {On a~density estimation within a~class of entire functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {514--524},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - R. Z. Has'minskiǐ
TI  - On a~density estimation within a~class of entire functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 514
EP  - 524
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/
LA  - ru
ID  - TVP_1982_27_3_a8
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A R. Z. Has'minskiǐ
%T On a~density estimation within a~class of entire functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 514-524
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/
%G ru
%F TVP_1982_27_3_a8
I. A. Ibragimov; R. Z. Has'minskiǐ. On a~density estimation within a~class of entire functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 514-524. http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a8/