Large deviations of stochastic processes close to the Gaussian ones
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 474-491
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Asymptotic expansions for the probability $\displaystyle\mathbf P\{\max_{t\in[0,T]}X_{(n)}(t)>u\}$ when $u\to\infty$ or
$u,\,T\to\infty$ are given. It is supposed that the random process $X_{(n)}$ is close to the Gaussian process in some sense and is smooth enough in mean quadratic. As an example of application we consider the central limit theorem for random processes which are smooth in mean quadratic and for the noise-process.
			
            
            
            
          
        
      @article{TVP_1982_27_3_a5,
     author = {V. I. Piterbarg},
     title = {Large deviations of stochastic processes close to the {Gaussian} ones},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {474--491},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a5/}
}
                      
                      
                    V. I. Piterbarg. Large deviations of stochastic processes close to the Gaussian ones. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 474-491. http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a5/
