Large deviations of stochastic processes close to the Gaussian ones
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 474-491

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic expansions for the probability $\displaystyle\mathbf P\{\max_{t\in[0,T]}X_{(n)}(t)>u\}$ when $u\to\infty$ or $u,\,T\to\infty$ are given. It is supposed that the random process $X_{(n)}$ is close to the Gaussian process in some sense and is smooth enough in mean quadratic. As an example of application we consider the central limit theorem for random processes which are smooth in mean quadratic and for the noise-process.
@article{TVP_1982_27_3_a5,
     author = {V. I. Piterbarg},
     title = {Large deviations of stochastic processes close to the {Gaussian} ones},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {474--491},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a5/}
}
TY  - JOUR
AU  - V. I. Piterbarg
TI  - Large deviations of stochastic processes close to the Gaussian ones
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 474
EP  - 491
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a5/
LA  - ru
ID  - TVP_1982_27_3_a5
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%T Large deviations of stochastic processes close to the Gaussian ones
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 474-491
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a5/
%G ru
%F TVP_1982_27_3_a5
V. I. Piterbarg. Large deviations of stochastic processes close to the Gaussian ones. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 474-491. http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a5/