A comparison theorem for stochastic equations with integrals on martingales and random measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 425-433
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a comparison theorem for the solutions of general stochastic integral equations containing integrals on semimartingale's components. The equations with integrals on the Wiener process and the Poisson random measure are particular cases of the considered equations. It is proved that if the drift coefficient and the jump function for one equation are (in some sence) larger then for the other then the solution of the first equation
is larger too.
@article{TVP_1982_27_3_a1,
author = {L. I. Gal'\v{c}uk},
title = {A comparison theorem for stochastic equations with integrals on martingales and random measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {425--433},
publisher = {mathdoc},
volume = {27},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a1/}
}
TY - JOUR AU - L. I. Gal'čuk TI - A comparison theorem for stochastic equations with integrals on martingales and random measures JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 425 EP - 433 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a1/ LA - ru ID - TVP_1982_27_3_a1 ER -
L. I. Gal'čuk. A comparison theorem for stochastic equations with integrals on martingales and random measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 425-433. http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a1/