On criteria for the existence of the strong solution of the stochastic equation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 417-424
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Criteria for the existence of the strong solution and for the strong uniqueness of a solution of the Ito's stochastic differential equation
$$
dx_t=\sigma(t,x_t)\,dw_t+b(t,x_t)\,dt,\qquad x_0=x\in E_d,
$$
are formulated in terms of the linear parabolic equations theory and proved.
			
            
            
            
          
        
      @article{TVP_1982_27_3_a0,
     author = {A. Yu. Veretennikov},
     title = {On criteria for the existence of the strong solution of the stochastic equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--424},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a0/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Veretennikov TI - On criteria for the existence of the strong solution of the stochastic equation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 417 EP - 424 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a0/ LA - ru ID - TVP_1982_27_3_a0 ER -
A. Yu. Veretennikov. On criteria for the existence of the strong solution of the stochastic equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 3, pp. 417-424. http://geodesic.mathdoc.fr/item/TVP_1982_27_3_a0/
