Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 308-318
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, estimates of the convergence rate in the central limit theorem are obtained. The estimates take into account large deviations and closeness of summands' distributions to the normal one. In the paper we prove two lemmas on the convergence rate for the compositions of certain $k$-dimensional Borel measures satisfying Cramer's condition.
@article{TVP_1982_27_2_a9,
author = {S. Ya. \v{S}orgin},
title = {Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {308--318},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/}
}
TY - JOUR AU - S. Ya. Šorgin TI - Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 308 EP - 318 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/ LA - ru ID - TVP_1982_27_2_a9 ER -
%0 Journal Article %A S. Ya. Šorgin %T Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 308-318 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/ %G ru %F TVP_1982_27_2_a9
S. Ya. Šorgin. Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 308-318. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/