Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 308-318

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, estimates of the convergence rate in the central limit theorem are obtained. The estimates take into account large deviations and closeness of summands' distributions to the normal one. In the paper we prove two lemmas on the convergence rate for the compositions of certain $k$-dimensional Borel measures satisfying Cramer's condition.
@article{TVP_1982_27_2_a9,
     author = {S. Ya. \v{S}orgin},
     title = {Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {308--318},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/}
}
TY  - JOUR
AU  - S. Ya. Šorgin
TI  - Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 308
EP  - 318
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/
LA  - ru
ID  - TVP_1982_27_2_a9
ER  - 
%0 Journal Article
%A S. Ya. Šorgin
%T Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 308-318
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/
%G ru
%F TVP_1982_27_2_a9
S. Ya. Šorgin. Non-classical estimates of the rate of convergence in the central limit theorem which take into account large deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 308-318. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a9/