Limit theorems for random partitions
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 296-307
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\dots,\xi_{n-1}$ be a sequence of independent random variables with the common density $p(x)$. The order statistics $\xi_{(1)}\dots\xi_{(n-1)}$ define a partition of the interval
$(\underline c,\bar c)=(\inf\operatorname{supp}F_\xi,\sup\operatorname{supp}F_\xi)$. The successive spacings are
$$
I_1=\xi_{(1)}-\underline c,\ I_2=\xi_{(2)}-\xi_{(1)},\dots,\
I_{n-1}=\xi_{(n-1)}-\xi_{(n-2)},\ I_n=\bar c-\xi_{(n-1)}.
$$
The extremal values of these spacings are interesting from the point of view of the spectral theory of random operators. Let $I_{(1)}$ be the values $I_1,I_2,\dots,I_n$ arranged in an ascending order.
We prove here some limit theorems for the distribution of extremal spacings under the minimal assumptions on the regularity of $p(x)$. One of the two central results is the following theorem.
Theorem 1. {\it If $p(x)\in L_2(R^1)$, $\displaystyle\lambda=\int_{R^1}p^2(x)\,dx$ then for all $x_1,\dots,x_k>0$
\begin{gather*}
\lim_{n\to\infty}\mathbf P\{n^2I_{(1)}>x_1,\ n^2(I_{(2)}-I_{(1)})>x_2.\dots,n^2(I_{(k)}-I_{(k-1)})>x_k\}=\\
=\operatorname{exp}\{-\lambda(x_1+x_2+\dots+x_k)\}.
\end{gather*}
}
If $\displaystyle\int_{R^1}p^2(x)\,dx=\infty$ the limit distribution of $I_{(1)}$ in general case does not exist.
@article{TVP_1982_27_2_a8,
author = {S. A. Mol\v{c}anov and A. Ya. Reznikova},
title = {Limit theorems for random partitions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {296--307},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a8/}
}
S. A. Molčanov; A. Ya. Reznikova. Limit theorems for random partitions. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 296-307. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a8/