On the accuracy of Gaussian approximation for the probability of hitting a~ball
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 270-278
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,X_2,\dots$ be independent random vectors in a separable Hilbert space $H$ such that
$\mathbf EX_j=0$, $\mathbf E|X_j|^3\le L$ and $B$ is their common covariance operator. Let $Y$ be a centered Gaussian vector with a covariance operator $B/\operatorname{Sp} B$.
Theorem 1. {\it For $a\in H$, $r\ge 0$
$$
|\mathbf P\{|a+S_n|\}-\mathbf P\{|a+Y|\}|\le cL(\operatorname{Sp}B)^{-1/2}(1+|a|^3)n^{-1/2},
$$
where $S_n=(X_1+\dots+X_n)(n\operatorname{Sp}B)^{-1/2}$ and $c$ depends on the spectrum of $B/\operatorname{Sp}B$ only.}
The proof is based on the combination of results [2], [3].
@article{TVP_1982_27_2_a5,
author = {V. V. Yurinskiǐ},
title = {On the accuracy of {Gaussian} approximation for the probability of hitting a~ball},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {270--278},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a5/}
}
TY - JOUR AU - V. V. Yurinskiǐ TI - On the accuracy of Gaussian approximation for the probability of hitting a~ball JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 270 EP - 278 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a5/ LA - ru ID - TVP_1982_27_2_a5 ER -
V. V. Yurinskiǐ. On the accuracy of Gaussian approximation for the probability of hitting a~ball. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 270-278. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a5/