Limit behaviour of one-dimensional random walks in random environments
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 247-258
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the simplest one-dimensional random walks with transitions $x\to x\pm 1$
having the probabilities $1/2\pm \xi(x)$ where $\xi(x)$ are independent random variables with zero mean and
$|\xi(x)|\le c1/2$. Let $x(n)$ be the position of the moving particle after $n$ steps. We show that the limit distribution of $x(n)/\ln^2n$ is concentrated in a random point depending on a concrete realization of $\xi(\cdot)$.
@article{TVP_1982_27_2_a3,
author = {Ya. G. Sina{\^\i}},
title = {Limit behaviour of one-dimensional random walks in random environments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {247--258},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a3/}
}
Ya. G. Sinaî. Limit behaviour of one-dimensional random walks in random environments. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 247-258. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a3/