On the parameter estimation by means of the Davidon--Fletcher--Powell method
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 374-380
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that if the distribution of a random functional depends on a vector parameter $\theta_n$ than the iterative Davidon–Fletcher–Powell method provides estimates of $\theta_n$ with good asymptotical properties.
			
            
            
            
          
        
      @article{TVP_1982_27_2_a21,
     author = {G. Beinicke and K. O. Dzhaparidze},
     title = {On the parameter estimation by means of the {Davidon--Fletcher--Powell} method},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {374--380},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a21/}
}
                      
                      
                    TY - JOUR AU - G. Beinicke AU - K. O. Dzhaparidze TI - On the parameter estimation by means of the Davidon--Fletcher--Powell method JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 374 EP - 380 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a21/ LA - ru ID - TVP_1982_27_2_a21 ER -
G. Beinicke; K. O. Dzhaparidze. On the parameter estimation by means of the Davidon--Fletcher--Powell method. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 374-380. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a21/
