More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 369-373

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,X_2,\dots$ be a stationary sequence of $m$-dependent random variables and let $\Phi(x_1,\dots,x_r)$ be a symmetric function. For the distribution of the $U$-statistics $$ U_n=(C_n^r)^{-1}\sum_{1\le i_1\dots\le n}\Phi(X_{i_1},\dots,X_{i_r}) $$ the rate of convergence to the normal law is investigated.
@article{TVP_1982_27_2_a20,
     author = {T. L. Malevi\v{c} and {\CYRV}. Abdalimov},
     title = {More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {369--373},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/}
}
TY  - JOUR
AU  - T. L. Malevič
AU  - В. Abdalimov
TI  - More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 369
EP  - 373
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/
LA  - ru
ID  - TVP_1982_27_2_a20
ER  - 
%0 Journal Article
%A T. L. Malevič
%A В. Abdalimov
%T More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 369-373
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/
%G ru
%F TVP_1982_27_2_a20
T. L. Malevič; В. Abdalimov. More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 369-373. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/