More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 369-373
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_1,X_2,\dots$ be a stationary sequence of $m$-dependent random variables and let $\Phi(x_1,\dots,x_r)$ be a symmetric function. For the distribution of the $U$-statistics $$ U_n=(C_n^r)^{-1}\sum_{1\le i_1<\dots<i_r\le n}\Phi(X_{i_1},\dots,X_{i_r}) $$ the rate of convergence to the normal law is investigated.
@article{TVP_1982_27_2_a20,
author = {T. L. Malevi\v{c} and {\CYRV}. Abdalimov},
title = {More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {369--373},
year = {1982},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/}
}
TY - JOUR AU - T. L. Malevič AU - В. Abdalimov TI - More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 369 EP - 373 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/ LA - ru ID - TVP_1982_27_2_a20 ER -
T. L. Malevič; В. Abdalimov. More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 369-373. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/