More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 369-373
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,X_2,\dots$ be a stationary sequence of $m$-dependent random variables and let $\Phi(x_1,\dots,x_r)$ be a symmetric function. For the distribution of the $U$-statistics
$$
U_n=(C_n^r)^{-1}\sum_{1\le i_1\dots\le n}\Phi(X_{i_1},\dots,X_{i_r})
$$
the rate of convergence to the normal law is investigated.
			
            
            
            
          
        
      @article{TVP_1982_27_2_a20,
     author = {T. L. Malevi\v{c} and {\CYRV}. Abdalimov},
     title = {More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {369--373},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/}
}
                      
                      
                    TY - JOUR AU - T. L. Malevič AU - В. Abdalimov TI - More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 369 EP - 373 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/ LA - ru ID - TVP_1982_27_2_a20 ER -
%0 Journal Article %A T. L. Malevič %A В. Abdalimov %T More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 369-373 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/ %G ru %F TVP_1982_27_2_a20
T. L. Malevič; В. Abdalimov. More precise form of the central limit theorem for $U$-statistics of $m$-dependent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 369-373. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a20/
