The invariance principle for stationary random fields satisfying the strong mixing condition
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 358-364
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi(u)$, $u\in R^q$, be a stationary random field satisfying the strong mixing condition, $V$ be an open set in $R^q$ with finite Lebesgue's measure $\mu(V)$, $$ T(V)=\int_V\xi(u)\,du, $$ The sufficient condition for the weak convergence of $$ \zeta_r(t)=(r^q\mu(V))^{-1/2}T(rt^{1/q}V),\qquad t\in[0,1], $$ to some Gaussian process $w_V(t)$ are obtained.
@article{TVP_1982_27_2_a18,
author = {V. V. Gorode{\cyrs}kiǐ},
title = {The invariance principle for stationary random fields satisfying the strong mixing condition},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {358--364},
year = {1982},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a18/}
}
TY - JOUR AU - V. V. Gorodeсkiǐ TI - The invariance principle for stationary random fields satisfying the strong mixing condition JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 358 EP - 364 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a18/ LA - ru ID - TVP_1982_27_2_a18 ER -
V. V. Gorodeсkiǐ. The invariance principle for stationary random fields satisfying the strong mixing condition. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 358-364. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a18/