The invariance principle for stationary random fields satisfying the strong mixing condition
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 358-364
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi(u)$, $u\in R^q$, be a stationary random field satisfying the strong mixing condition, $V$ be an open set in $R^q$ with finite Lebesgue's measure $\mu(V)$,
$$
T(V)=\int_V\xi(u)\,du,
$$
The sufficient condition for the weak convergence of
$$
\zeta_r(t)=(r^q\mu(V))^{-1/2}T(rt^{1/q}V),\qquad t\in[0,1],
$$
to some Gaussian process $w_V(t)$ are obtained.
			
            
            
            
          
        
      @article{TVP_1982_27_2_a18,
     author = {V. V. Gorode{\cyrs}kiǐ},
     title = {The invariance principle for stationary random fields satisfying the strong mixing condition},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {358--364},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a18/}
}
                      
                      
                    TY - JOUR AU - V. V. Gorodeсkiǐ TI - The invariance principle for stationary random fields satisfying the strong mixing condition JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 358 EP - 364 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a18/ LA - ru ID - TVP_1982_27_2_a18 ER -
V. V. Gorodeсkiǐ. The invariance principle for stationary random fields satisfying the strong mixing condition. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 358-364. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a18/
