The sequences of points in infinite-dimensional spaces and the integration of functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 353-358
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct the sequence of points in the space $[0,1]^\omega$ such that for every parallelepiped
the frequency of hitting in it equals to its measure. Some consequences of this fact are considired.
			
            
            
            
          
        
      @article{TVP_1982_27_2_a17,
     author = {V. A. Kanevskiǐ and G. \v{S}. Lev},
     title = {The sequences of points in infinite-dimensional spaces and the integration of functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {353--358},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/}
}
                      
                      
                    TY - JOUR AU - V. A. Kanevskiǐ AU - G. Š. Lev TI - The sequences of points in infinite-dimensional spaces and the integration of functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 353 EP - 358 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/ LA - ru ID - TVP_1982_27_2_a17 ER -
%0 Journal Article %A V. A. Kanevskiǐ %A G. Š. Lev %T The sequences of points in infinite-dimensional spaces and the integration of functions %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 353-358 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/ %G ru %F TVP_1982_27_2_a17
V. A. Kanevskiǐ; G. Š. Lev. The sequences of points in infinite-dimensional spaces and the integration of functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 353-358. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/
