The sequences of points in infinite-dimensional spaces and the integration of functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 353-358

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the sequence of points in the space $[0,1]^\omega$ such that for every parallelepiped the frequency of hitting in it equals to its measure. Some consequences of this fact are considired.
@article{TVP_1982_27_2_a17,
     author = {V. A. Kanevskiǐ and G. \v{S}. Lev},
     title = {The sequences of points in infinite-dimensional spaces and the integration of functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {353--358},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/}
}
TY  - JOUR
AU  - V. A. Kanevskiǐ
AU  - G. Š. Lev
TI  - The sequences of points in infinite-dimensional spaces and the integration of functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 353
EP  - 358
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/
LA  - ru
ID  - TVP_1982_27_2_a17
ER  - 
%0 Journal Article
%A V. A. Kanevskiǐ
%A G. Š. Lev
%T The sequences of points in infinite-dimensional spaces and the integration of functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 353-358
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/
%G ru
%F TVP_1982_27_2_a17
V. A. Kanevskiǐ; G. Š. Lev. The sequences of points in infinite-dimensional spaces and the integration of functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 353-358. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/