The sequences of points in infinite-dimensional spaces and the integration of functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 353-358
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct the sequence of points in the space $[0,1]^\omega$ such that for every parallelepiped the frequency of hitting in it equals to its measure. Some consequences of this fact are considired.
@article{TVP_1982_27_2_a17,
author = {V. A. Kanevskiǐ and G. \v{S}. Lev},
title = {The sequences of points in infinite-dimensional spaces and the integration of functions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {353--358},
year = {1982},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/}
}
TY - JOUR AU - V. A. Kanevskiǐ AU - G. Š. Lev TI - The sequences of points in infinite-dimensional spaces and the integration of functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 353 EP - 358 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/ LA - ru ID - TVP_1982_27_2_a17 ER -
V. A. Kanevskiǐ; G. Š. Lev. The sequences of points in infinite-dimensional spaces and the integration of functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 353-358. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a17/