On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in Euclidean space
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 342-344

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a distribution of a location parameter for the composition of random motions in the Euclidean space. It is supposed that the $n$-fold convolution of rotation parameter distribution converges weakly to the uniform distribution on $SO(d)$ and that the location parameter has a distribution belonging to the domain of attraction of some nondegenerate multidimensional law. The integral limit theorem for the location parameter is proved.
@article{TVP_1982_27_2_a14,
     author = {Yu. S. Hohlov},
     title = {On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in {Euclidean} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {342--344},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/}
}
TY  - JOUR
AU  - Yu. S. Hohlov
TI  - On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in Euclidean space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 342
EP  - 344
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/
LA  - ru
ID  - TVP_1982_27_2_a14
ER  - 
%0 Journal Article
%A Yu. S. Hohlov
%T On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in Euclidean space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 342-344
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/
%G ru
%F TVP_1982_27_2_a14
Yu. S. Hohlov. On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in Euclidean space. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 342-344. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/