On the convergence to a multidimensional stable law of the distribution of a location parameter for the composition of random motions in Euclidean space
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 342-344
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a distribution of a location parameter for the composition of random motions in the Euclidean space. It is supposed that the $n$-fold convolution of rotation parameter distribution converges weakly to the uniform distribution on $SO(d)$ and that the location parameter has a distribution belonging to the domain of attraction of some nondegenerate multidimensional law. The integral limit theorem for the location parameter is proved.
@article{TVP_1982_27_2_a14,
author = {Yu. S. Hohlov},
title = {On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in {Euclidean} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {342--344},
year = {1982},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/}
}
TY - JOUR AU - Yu. S. Hohlov TI - On the convergence to a multidimensional stable law of the distribution of a location parameter for the composition of random motions in Euclidean space JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 342 EP - 344 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/ LA - ru ID - TVP_1982_27_2_a14 ER -
%0 Journal Article %A Yu. S. Hohlov %T On the convergence to a multidimensional stable law of the distribution of a location parameter for the composition of random motions in Euclidean space %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 342-344 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/ %G ru %F TVP_1982_27_2_a14
Yu. S. Hohlov. On the convergence to a multidimensional stable law of the distribution of a location parameter for the composition of random motions in Euclidean space. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 342-344. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a14/