Central limit theorem for stationary sequences in the Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 337-339
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_i$ be a centered strong stationary sequence in the separable Hilbert space $H$. We say that $\xi_i$ satisfy CLT if $S_n=n^{-1/2}(\xi_1+\dots+\xi_n)$ converges weakly to a Gaussian variable $\eta$, $\mathbf P\{\eta\in H\}=1$. We study some conditions on a mixing of a sequence $\xi_i$ for this sequence to satisfy CLT.
@article{TVP_1982_27_2_a11,
author = {V. V. Mal'cev and E. I. Ostrovskiǐ},
title = {Central limit theorem for stationary sequences in the {Hilbert} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {337--339},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a11/}
}
TY - JOUR AU - V. V. Mal'cev AU - E. I. Ostrovskiǐ TI - Central limit theorem for stationary sequences in the Hilbert space JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 337 EP - 339 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a11/ LA - ru ID - TVP_1982_27_2_a11 ER -
V. V. Mal'cev; E. I. Ostrovskiǐ. Central limit theorem for stationary sequences in the Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 337-339. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a11/