An optimal stopping of a random sequence and Hammerstain's operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 319-336

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of probabilistic methods the Hammerstain's equations with monotonous convex operator are investigated. Each equation with such operator may be represented as Bellman's equation connected with some generalized problem of the optimal stopping of random sequences. The recurrent scheme of construction of the value function is given.
@article{TVP_1982_27_2_a10,
     author = {N. V. Elbakidze},
     title = {An optimal stopping of a random sequence and {Hammerstain's} operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {319--336},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a10/}
}
TY  - JOUR
AU  - N. V. Elbakidze
TI  - An optimal stopping of a random sequence and Hammerstain's operator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 319
EP  - 336
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a10/
LA  - ru
ID  - TVP_1982_27_2_a10
ER  - 
%0 Journal Article
%A N. V. Elbakidze
%T An optimal stopping of a random sequence and Hammerstain's operator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 319-336
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a10/
%G ru
%F TVP_1982_27_2_a10
N. V. Elbakidze. An optimal stopping of a random sequence and Hammerstain's operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 319-336. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a10/