The limit behaviour of decomposable critical branching processes with two types of particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 228-238
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two-dimensional branching processes $\mu(t)=(\mu_1(t),\mu_2(t))$, $t\in\{0,1,\dots\}$, with the offspring generating functions
\begin{gather*}
\mathbf E\{s_1^{\mu_1(1)}s_2^{\mu_2(1)}\mid\mu(0)=(1,0)\}=
F_1(s_1)=s_1+(1-s_1)^{1+\alpha_1}L_1(1-s_1),
\\
\mathbf E\{s_1^{\mu_1(1)}s_2^{\mu_2(1)}\mid\mu(0)=(0,1)\}=
s_2+(1-s_2)^{1+\alpha_2}L_2(1-s_2)-(A+o(1))(1-s_1),
\end{gather*}
where $0\alpha_1$, $\alpha_2\le 1$ and the functions $L_1(x)$, $L_2(x)$ are slowly varying when
$x\downarrow 0$. We investigate the asymptotics of
$$
\mathbf P\{\mu(t)\ne 0\mid\mu(0)=(0,1)\},\qquad t\to\infty,
$$
and prove the limit theorems for the conditional distribution of the numbers of particles.
@article{TVP_1982_27_2_a1,
author = {A. M. Zubkov},
title = {The limit behaviour of decomposable critical branching processes with two types of particles},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {228--238},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a1/}
}
TY - JOUR AU - A. M. Zubkov TI - The limit behaviour of decomposable critical branching processes with two types of particles JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 228 EP - 238 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a1/ LA - ru ID - TVP_1982_27_2_a1 ER -
A. M. Zubkov. The limit behaviour of decomposable critical branching processes with two types of particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 2, pp. 228-238. http://geodesic.mathdoc.fr/item/TVP_1982_27_2_a1/