Bounds for the risks of nonparametric estimates of the regression
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 81-94
Cet article a éte moissonné depuis la source Math-Net.Ru
Let us assume that the observations $Y_1,\dots,Y_N$ have the form (0.1) and that it is known only that $f$ belongs to the set $\Sigma$ of $2\pi$-periodical functions in some functional space. We consider the loss function of the type $l(\|\hat f_N-f\|_\infty)$, where $l(x)$ increases for $x>0$, and prove that the equidistant experimental design and the estimator (1.4) for $f$ are asymptotically optimal in the sense of the rate of convergence of risks for the wide class of sets $\Sigma$ if the integer $n$ in (1.4) satisfies the equation (1.14). In particular, the optimal order of the rate of convergence is $(N/\ln N)^{-\beta/(2\beta+1)}$ if $\Sigma$ is the set of periodical functions with smoothness $\beta$.
@article{TVP_1982_27_1_a7,
author = {I. A. Ibragimov and R. Z. Has'minskiǐ},
title = {Bounds for the risks of nonparametric estimates of the regression},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {81--94},
year = {1982},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a7/}
}
I. A. Ibragimov; R. Z. Has'minskiǐ. Bounds for the risks of nonparametric estimates of the regression. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a7/