Bounds for the risks of nonparametric estimates of the regression
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us assume that the observations $Y_1,\dots,Y_N$ have the form (0.1) and that it is known only that $f$ belongs to the set $\Sigma$ of $2\pi$-periodical functions in some functional space. We consider the loss function of the type $l(\|\hat f_N-f\|_\infty)$, where $l(x)$ increases for $x>0$, and prove that the equidistant experimental design and the estimator (1.4) for $f$ are asymptotically optimal in the sense of the rate of convergence of risks for the wide class of sets $\Sigma$ if the integer $n$ in (1.4) satisfies the equation (1.14). In particular, the optimal order of the rate of convergence is $(N/\ln N)^{-\beta/(2\beta+1)}$ if $\Sigma$ is the set of periodical functions with smoothness $\beta$.
@article{TVP_1982_27_1_a7,
     author = {I. A. Ibragimov and R. Z. Has'minskiǐ},
     title = {Bounds for the risks of nonparametric estimates of the regression},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a7/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - R. Z. Has'minskiǐ
TI  - Bounds for the risks of nonparametric estimates of the regression
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 81
EP  - 94
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a7/
LA  - ru
ID  - TVP_1982_27_1_a7
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A R. Z. Has'minskiǐ
%T Bounds for the risks of nonparametric estimates of the regression
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 81-94
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a7/
%G ru
%F TVP_1982_27_1_a7
I. A. Ibragimov; R. Z. Has'minskiǐ. Bounds for the risks of nonparametric estimates of the regression. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a7/