The fibre method and its application to the investigation of functionals of stochastic processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 67-80
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $W(t)$, $t\in[0,1]$ be a standard Wiener process. The distribution of the functional
$$
J=\int_0^1g(W(t),t)\,dt
$$
is considered. Some conditions are found under which the distribution of $J$ has a bounded density. Some estimates of this density for large values of $J$ are given.
			
            
            
            
          
        
      @article{TVP_1982_27_1_a6,
     author = {M. A. Lif\v{s}ic},
     title = {The fibre method and its application to the investigation of functionals of stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/}
}
                      
                      
                    TY - JOUR AU - M. A. Lifšic TI - The fibre method and its application to the investigation of functionals of stochastic processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 67 EP - 80 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/ LA - ru ID - TVP_1982_27_1_a6 ER -
M. A. Lifšic. The fibre method and its application to the investigation of functionals of stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 67-80. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/
