The fibre method and its application to the investigation of functionals of stochastic processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 67-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W(t)$, $t\in[0,1]$ be a standard Wiener process. The distribution of the functional $$ J=\int_0^1g(W(t),t)\,dt $$ is considered. Some conditions are found under which the distribution of $J$ has a bounded density. Some estimates of this density for large values of $J$ are given.
@article{TVP_1982_27_1_a6,
     author = {M. A. Lif\v{s}ic},
     title = {The fibre method and its application to the investigation of functionals of stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/}
}
TY  - JOUR
AU  - M. A. Lifšic
TI  - The fibre method and its application to the investigation of functionals of stochastic processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 67
EP  - 80
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/
LA  - ru
ID  - TVP_1982_27_1_a6
ER  - 
%0 Journal Article
%A M. A. Lifšic
%T The fibre method and its application to the investigation of functionals of stochastic processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 67-80
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/
%G ru
%F TVP_1982_27_1_a6
M. A. Lifšic. The fibre method and its application to the investigation of functionals of stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 67-80. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a6/