Weak convergence of matrices of transition probabilities for the conditioned Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 57-66
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\zeta_t=(\xi_t,\eta_t)$ be a two-dimensional countable Markov chain. The component $\xi_t\,(t=1\div n)$ may be considered as a conditioned Markov chain with respect to the conditional probability measure $\mathbf P\{\cdot\mid\eta_1,\dots,\eta_n\}$. We prove that under some assumptions all components of the matrix of transition probabilities of conditioned Markov chain converge weakly to the corresponding limits when $n\to\infty$.
@article{TVP_1982_27_1_a5,
author = {Z. I. Be\v{z}aeva},
title = {Weak convergence of matrices of transition probabilities for the conditioned {Markov} chains},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {57--66},
year = {1982},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a5/}
}
Z. I. Bežaeva. Weak convergence of matrices of transition probabilities for the conditioned Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a5/