Analyticity of Gaussian measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 147-154

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of differentiability and analyticity of a (generalized) random function are introduced. It is proved that Gaussian random function is both infinitely differentiable and analytic (i. e., may be expanded in the power series). As an application of these results we prove that a bounded uniformly continuous functional defined on a subset of Frechet space may be uniformly approximated by analytical functionals. The analyticity of the fundamental solution of infinite-dimensional heat equation is proved also.
@article{TVP_1982_27_1_a14,
     author = {V. Yu. Bentkus},
     title = {Analyticity of {Gaussian} measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {147--154},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a14/}
}
TY  - JOUR
AU  - V. Yu. Bentkus
TI  - Analyticity of Gaussian measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 147
EP  - 154
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a14/
LA  - ru
ID  - TVP_1982_27_1_a14
ER  - 
%0 Journal Article
%A V. Yu. Bentkus
%T Analyticity of Gaussian measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 147-154
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a14/
%G ru
%F TVP_1982_27_1_a14
V. Yu. Bentkus. Analyticity of Gaussian measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 147-154. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a14/