On the rate of convergence in the central limit theorem for semimartingales
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 3-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(X^n)_{n\ge 1}$ be a family of semimartingales with the canonical representation (1). Under the conditions (А), (В), (C) the central limit theorem is valid:
$$
R_t^n=\sup_x\biggl|\mathbf P\{X_t^n\le x\}-\Phi\biggl(\frac{x}{\sqrt V_t}\biggr)\biggr|\to0,\qquad n\to\infty.
$$
We give the estimates (3)–(6) for the rate of convergence of $R_t^n$ in the cases when $(X^n)_{n\ge 1}$ are families of semimartingales, local martingales and local square integrable martingales.
			
            
            
            
          
        
      @article{TVP_1982_27_1_a0,
     author = {R. \v{S}. Lip{\cyrs}er and A. N. \v{S}iryaev},
     title = {On the rate of convergence in the central limit theorem for semimartingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/}
}
                      
                      
                    TY - JOUR AU - R. Š. Lipсer AU - A. N. Širyaev TI - On the rate of convergence in the central limit theorem for semimartingales JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 3 EP - 14 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/ LA - ru ID - TVP_1982_27_1_a0 ER -
R. Š. Lipсer; A. N. Širyaev. On the rate of convergence in the central limit theorem for semimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/
