On the rate of convergence in the central limit theorem for semimartingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X^n)_{n\ge 1}$ be a family of semimartingales with the canonical representation (1). Under the conditions (А), (В), (C) the central limit theorem is valid: $$ R_t^n=\sup_x\biggl|\mathbf P\{X_t^n\le x\}-\Phi\biggl(\frac{x}{\sqrt V_t}\biggr)\biggr|\to0,\qquad n\to\infty. $$ We give the estimates (3)–(6) for the rate of convergence of $R_t^n$ in the cases when $(X^n)_{n\ge 1}$ are families of semimartingales, local martingales and local square integrable martingales.
@article{TVP_1982_27_1_a0,
     author = {R. \v{S}. Lip{\cyrs}er and A. N. \v{S}iryaev},
     title = {On the rate of convergence in the central limit theorem for semimartingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/}
}
TY  - JOUR
AU  - R. Š. Lipсer
AU  - A. N. Širyaev
TI  - On the rate of convergence in the central limit theorem for semimartingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 3
EP  - 14
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/
LA  - ru
ID  - TVP_1982_27_1_a0
ER  - 
%0 Journal Article
%A R. Š. Lipсer
%A A. N. Širyaev
%T On the rate of convergence in the central limit theorem for semimartingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 3-14
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/
%G ru
%F TVP_1982_27_1_a0
R. Š. Lipсer; A. N. Širyaev. On the rate of convergence in the central limit theorem for semimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a0/