On the rate of convergence in the strong law of large numbers for stationary processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 720-733
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			If the covariance of a stationary (in a wide sense) process decreases with some rate, then means $\sigma_T$ (see (2)) converge to 0 a. s. We obtain the estimates for the rate of this convergence. These estimates are the best in a some sense.
			
            
            
            
          
        
      @article{TVP_1981_26_4_a3,
     author = {V. F. Gapo\v{s}kin},
     title = {On the rate of convergence in the strong law of large numbers for stationary processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {720--733},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/}
}
                      
                      
                    TY - JOUR AU - V. F. Gapoškin TI - On the rate of convergence in the strong law of large numbers for stationary processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 720 EP - 733 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/ LA - ru ID - TVP_1981_26_4_a3 ER -
V. F. Gapoškin. On the rate of convergence in the strong law of large numbers for stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 720-733. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/
