On the rate of convergence in the strong law of large numbers for stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 720-733

Voir la notice de l'article provenant de la source Math-Net.Ru

If the covariance of a stationary (in a wide sense) process decreases with some rate, then means $\sigma_T$ (see (2)) converge to 0 a. s. We obtain the estimates for the rate of this convergence. These estimates are the best in a some sense.
@article{TVP_1981_26_4_a3,
     author = {V. F. Gapo\v{s}kin},
     title = {On the rate of convergence in the strong law of large numbers for stationary processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {720--733},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/}
}
TY  - JOUR
AU  - V. F. Gapoškin
TI  - On the rate of convergence in the strong law of large numbers for stationary processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 720
EP  - 733
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/
LA  - ru
ID  - TVP_1981_26_4_a3
ER  - 
%0 Journal Article
%A V. F. Gapoškin
%T On the rate of convergence in the strong law of large numbers for stationary processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 720-733
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/
%G ru
%F TVP_1981_26_4_a3
V. F. Gapoškin. On the rate of convergence in the strong law of large numbers for stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 720-733. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a3/