On limit theorems on large deviations in narrow zones
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 847-857

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables, $S_n=X_1+\dots+X_n$, $\Phi(x)$ be the standard normal distribution function. We investigate the asymptotics of $$ \mathbf P\{S_n>x\}/(1-\Phi(x/B_n)),\qquad n\to\infty, $$ for $0\le x\le \Lambda(B_n)$, where the function $\Lambda(z)$ is such that $$ \Lambda(z)/z\uparrow\infty,\quad\Lambda(z)/z^{1+\varepsilon}\downarrow 0\quad(0\varepsilon1,\ z>z_0), $$ the sequence $B_n\to\infty$ ($n\to\infty$) and $$ \sup_{x\ge 0}|\mathbf P\{S_n\}-\Phi(x)|=o(1),\qquad n\to\infty. $$
@article{TVP_1981_26_4_a18,
     author = {L. V. Rozovskiǐ},
     title = {On limit theorems on large deviations in narrow zones},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {847--857},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a18/}
}
TY  - JOUR
AU  - L. V. Rozovskiǐ
TI  - On limit theorems on large deviations in narrow zones
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 847
EP  - 857
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a18/
LA  - ru
ID  - TVP_1981_26_4_a18
ER  - 
%0 Journal Article
%A L. V. Rozovskiǐ
%T On limit theorems on large deviations in narrow zones
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 847-857
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a18/
%G ru
%F TVP_1981_26_4_a18
L. V. Rozovskiǐ. On limit theorems on large deviations in narrow zones. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 847-857. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a18/