Two inequalities for symmetric processes and symmetric distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 827-832
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists a constant $C_1$ such that:
a) for any stochastic process $\xi_t$ with symmetric stationary independent increments and for any $\delta>0$
$$
|\mathbf P\{\xi_t\in[x,x+h)\}-\mathbf P\{\xi_{t+\delta}\in[x,x+h)\}|
C_1\gamma_{ht}(1+|ln\gamma_{ht}|)^4\ln\biggl(1+\frac{\delta}{t}\biggr),
$$
where $\displaystyle\gamma_{ht}=\sup_x\mathbf P\{\xi_t\in[x,x+h)\}$,
b) for any symmetric probabilistic measure $F$ on the real line and for any $a>0$
$$
|a(F-E)e^{a(F-E)}\{[x,x+h)\}|\gamma_h(1+|\ln\gamma_h|)^4,
$$
where $\displaystyle\gamma_h=\sup_x e^{a(F-E)}\{[x,x+h)\}$, $\displaystyle e^{a(F-E)}=e^{-a}\sum_{k=0}^{\infty}(a^kF^k)/k!$, $F^n$ is $n$-fold convolution of $F$ with itself, $E$ is a probabilistic measure with a unit mass at zero.
@article{TVP_1981_26_4_a14,
author = {E. L. Presman},
title = {Two inequalities for symmetric processes and symmetric distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {827--832},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a14/}
}
E. L. Presman. Two inequalities for symmetric processes and symmetric distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 827-832. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a14/