On a~class of limit theorems for a~critical Bellman--Harris branching process
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 818-824

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $z(t)$ be a critical Bellman–Harris branching process with lifetime distribution $G(t)$ and offspring generating function $f(s)=s+(1-s)^{1+\alpha}L(1-s)$, where $0\alpha\le 1$ and $L(s)$ is slowly varying at 0. Let us denote by $f_k(s)$ the $k$-th iterate of $f(s)$. For the case when $$ 0\le\liminf_{n\to\infty}\frac{n(1-G(n))}{1-f_n(0)}\limsup_{n\to\infty}\frac{n(1-G(n))}{1-f_n(0)}\infty $$ we prove some limit theorems for the process $z(t)$ which are analogous to those in [3].
@article{TVP_1981_26_4_a12,
     author = {V. A. Vatutin},
     title = {On a~class of limit theorems for a~critical {Bellman--Harris} branching process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {818--824},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - On a~class of limit theorems for a~critical Bellman--Harris branching process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 818
EP  - 824
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/
LA  - ru
ID  - TVP_1981_26_4_a12
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T On a~class of limit theorems for a~critical Bellman--Harris branching process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 818-824
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/
%G ru
%F TVP_1981_26_4_a12
V. A. Vatutin. On a~class of limit theorems for a~critical Bellman--Harris branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 818-824. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/