On a~class of limit theorems for a~critical Bellman--Harris branching process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 818-824
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $z(t)$ be a critical Bellman–Harris branching process with lifetime distribution $G(t)$ and offspring generating function $f(s)=s+(1-s)^{1+\alpha}L(1-s)$, where $0\alpha\le 1$ and $L(s)$ is slowly varying at 0. Let us denote by $f_k(s)$ the $k$-th iterate of $f(s)$. For the case when 
$$
0\le\liminf_{n\to\infty}\frac{n(1-G(n))}{1-f_n(0)}\limsup_{n\to\infty}\frac{n(1-G(n))}{1-f_n(0)}\infty
$$
we prove some limit theorems for the process $z(t)$ which are analogous to those in [3].
			
            
            
            
          
        
      @article{TVP_1981_26_4_a12,
     author = {V. A. Vatutin},
     title = {On a~class of limit theorems for a~critical {Bellman--Harris} branching process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {818--824},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/}
}
                      
                      
                    TY - JOUR AU - V. A. Vatutin TI - On a~class of limit theorems for a~critical Bellman--Harris branching process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 818 EP - 824 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/ LA - ru ID - TVP_1981_26_4_a12 ER -
V. A. Vatutin. On a~class of limit theorems for a~critical Bellman--Harris branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 818-824. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a12/
