Inequalities for a~distribution function of a~sum of two random variables when marginals are fixed
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 815-817

Voir la notice de l'article provenant de la source Math-Net.Ru

The author obtaines exact inequalities for a distribution function of a sum of two random variables in a class of bivariate distributions with fixed marginals.
@article{TVP_1981_26_4_a11,
     author = {G. D. Makarov},
     title = {Inequalities for a~distribution function of a~sum of two random variables when marginals are fixed},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {815--817},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a11/}
}
TY  - JOUR
AU  - G. D. Makarov
TI  - Inequalities for a~distribution function of a~sum of two random variables when marginals are fixed
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 815
EP  - 817
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a11/
LA  - ru
ID  - TVP_1981_26_4_a11
ER  - 
%0 Journal Article
%A G. D. Makarov
%T Inequalities for a~distribution function of a~sum of two random variables when marginals are fixed
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 815-817
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a11/
%G ru
%F TVP_1981_26_4_a11
G. D. Makarov. Inequalities for a~distribution function of a~sum of two random variables when marginals are fixed. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 4, pp. 815-817. http://geodesic.mathdoc.fr/item/TVP_1981_26_4_a11/