Minimal sufficient statistics for the normal models with an algebraic structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 574-583
Voir la notice de l'article provenant de la source Math-Net.Ru
For a normal linear mixed statistical structure with a special algebraic structure the simple complete and/or minimal sufficients statistics are obtained. A class of equivariant estimates of the model's parameters is described and the optimal (in this class) estimates are determined.
@article{TVP_1981_26_3_a9,
author = {{\CYRE}. A. Puhal'skiǐ},
title = {Minimal sufficient statistics for the normal models with an algebraic structure},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {574--583},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/}
}
TY - JOUR AU - Е. A. Puhal'skiǐ TI - Minimal sufficient statistics for the normal models with an algebraic structure JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 574 EP - 583 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/ LA - ru ID - TVP_1981_26_3_a9 ER -
Е. A. Puhal'skiǐ. Minimal sufficient statistics for the normal models with an algebraic structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 574-583. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/