Minimal sufficient statistics for the normal models with an algebraic structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 574-583

Voir la notice de l'article provenant de la source Math-Net.Ru

For a normal linear mixed statistical structure with a special algebraic structure the simple complete and/or minimal sufficients statistics are obtained. A class of equivariant estimates of the model's parameters is described and the optimal (in this class) estimates are determined.
@article{TVP_1981_26_3_a9,
     author = {{\CYRE}. A. Puhal'skiǐ},
     title = {Minimal sufficient statistics for the normal models with an algebraic structure},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {574--583},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/}
}
TY  - JOUR
AU  - Е. A. Puhal'skiǐ
TI  - Minimal sufficient statistics for the normal models with an algebraic structure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 574
EP  - 583
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/
LA  - ru
ID  - TVP_1981_26_3_a9
ER  - 
%0 Journal Article
%A Е. A. Puhal'skiǐ
%T Minimal sufficient statistics for the normal models with an algebraic structure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 574-583
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/
%G ru
%F TVP_1981_26_3_a9
Е. A. Puhal'skiǐ. Minimal sufficient statistics for the normal models with an algebraic structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 574-583. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a9/