The central limit theorem for random determinants
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 532-542
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Xi_n$ denotes random real $(n\times n)$-matrices. Their elements $\xi_{ij}^{(n)}$ ($i,j=1\div n$) are independent,
$$
\mathbf M\xi_{ij}^{(n)}=0,\qquad\mathbf D\xi_{ij}^{(n)}=1,\qquad\mathbf M(\xi_{ij}^{(n)})^4=3.
$$
If there is a number $\delta>0$ such that
$$
\sup_n\sup_{1\le i,j\le n} \mathbf M|\xi_{ij}^{(n)}|^{4+\delta}\infty
$$
then
$$
\lim_{n\to\infty}\mathbf P\biggl\{\frac{\ln\operatorname{det}\Xi_n^2-\ln(n-1)!}{\sqrt{2\ln n}}\biggr\}=
\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2}\,dy.
$$
@article{TVP_1981_26_3_a6,
author = {V. L. Girko},
title = {The central limit theorem for random determinants},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {532--542},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a6/}
}
V. L. Girko. The central limit theorem for random determinants. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 532-542. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a6/