The central limit theorem for random determinants
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 532-542

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Xi_n$ denotes random real $(n\times n)$-matrices. Their elements $\xi_{ij}^{(n)}$ ($i,j=1\div n$) are independent, $$ \mathbf M\xi_{ij}^{(n)}=0,\qquad\mathbf D\xi_{ij}^{(n)}=1,\qquad\mathbf M(\xi_{ij}^{(n)})^4=3. $$ If there is a number $\delta>0$ such that $$ \sup_n\sup_{1\le i,j\le n} \mathbf M|\xi_{ij}^{(n)}|^{4+\delta}\infty $$ then $$ \lim_{n\to\infty}\mathbf P\biggl\{\frac{\ln\operatorname{det}\Xi_n^2-\ln(n-1)!}{\sqrt{2\ln n}}\biggr\}= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2}\,dy. $$
@article{TVP_1981_26_3_a6,
     author = {V. L. Girko},
     title = {The central limit theorem for random determinants},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {532--542},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a6/}
}
TY  - JOUR
AU  - V. L. Girko
TI  - The central limit theorem for random determinants
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 532
EP  - 542
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a6/
LA  - ru
ID  - TVP_1981_26_3_a6
ER  - 
%0 Journal Article
%A V. L. Girko
%T The central limit theorem for random determinants
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 532-542
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a6/
%G ru
%F TVP_1981_26_3_a6
V. L. Girko. The central limit theorem for random determinants. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 532-542. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a6/