On the length of the longest head-run for the Markov chain with two states
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 510-520

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the asymptotic formula for the lenght of the longest head-run in the trajectory of a Markov chain with two states is obtained. The main theorem is the amplification and generalization (on the Markov chain) of the results proved by P. Erdös and P. Révész for the sequence of independent identically distributed random variables $\xi_i$ with $$ \mathbf P\{\xi_i=1\}=\mathbf P\{\xi_i=0\}=1/2. $$
@article{TVP_1981_26_3_a4,
     author = {S. S. Samarova},
     title = {On the length of the longest head-run for the {Markov} chain with two states},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {510--520},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a4/}
}
TY  - JOUR
AU  - S. S. Samarova
TI  - On the length of the longest head-run for the Markov chain with two states
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 510
EP  - 520
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a4/
LA  - ru
ID  - TVP_1981_26_3_a4
ER  - 
%0 Journal Article
%A S. S. Samarova
%T On the length of the longest head-run for the Markov chain with two states
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 510-520
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a4/
%G ru
%F TVP_1981_26_3_a4
S. S. Samarova. On the length of the longest head-run for the Markov chain with two states. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 510-520. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a4/