The exact asymptotics for the probability of large span of a~Gaussian stationary process
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 480-495

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the exact asymptotics for the probability $$ \mathbf P\{\max_{0\le t\le 1}\xi_t-\min_{0\le t\le 1}\xi_t>u\},\qquad u\to\infty, $$ under the assumption that the correlation function of a Gaussian stationary process $\xi_t$, $t\in[0,1]$, varies regularly at the origin.
@article{TVP_1981_26_3_a2,
     author = {V. I. Piterbarg and V. P. Prisya\v{z}nuk},
     title = {The exact asymptotics for the probability of large span of {a~Gaussian} stationary process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {480--495},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/}
}
TY  - JOUR
AU  - V. I. Piterbarg
AU  - V. P. Prisyažnuk
TI  - The exact asymptotics for the probability of large span of a~Gaussian stationary process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 480
EP  - 495
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/
LA  - ru
ID  - TVP_1981_26_3_a2
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%A V. P. Prisyažnuk
%T The exact asymptotics for the probability of large span of a~Gaussian stationary process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 480-495
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/
%G ru
%F TVP_1981_26_3_a2
V. I. Piterbarg; V. P. Prisyažnuk. The exact asymptotics for the probability of large span of a~Gaussian stationary process. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 480-495. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/