The exact asymptotics for the probability of large span of a Gaussian stationary process
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 480-495
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain the exact asymptotics for the probability $$ \mathbf P\{\max_{0\le t\le 1}\xi_t-\min_{0\le t\le 1}\xi_t>u\},\qquad u\to\infty, $$ under the assumption that the correlation function of a Gaussian stationary process $\xi_t$, $t\in[0,1]$, varies regularly at the origin.
@article{TVP_1981_26_3_a2,
author = {V. I. Piterbarg and V. P. Prisya\v{z}nuk},
title = {The exact asymptotics for the probability of large span of {a~Gaussian} stationary process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {480--495},
year = {1981},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/}
}
TY - JOUR AU - V. I. Piterbarg AU - V. P. Prisyažnuk TI - The exact asymptotics for the probability of large span of a Gaussian stationary process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 480 EP - 495 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/ LA - ru ID - TVP_1981_26_3_a2 ER -
V. I. Piterbarg; V. P. Prisyažnuk. The exact asymptotics for the probability of large span of a Gaussian stationary process. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 480-495. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a2/