On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 619-626 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of sequential estimation of parameter $\theta$ corresponding to the process $\xi=\{\xi_t,\ t\ge 0\}$ with a stochastic differential $$ d\xi_t=[\theta A_1(t,\xi)+A_0(t,\xi)]dt+B(t,\xi)dw_t,\qquad \xi_0=0. $$ Theorem. If the conditions 1)–4) of this paper are fulfilled, then the sequential estimation procedure $D_H=D(\tau_H,\delta_H)$, $0, where $H$ is a given constant, \begin{gather*} \tau_H(\xi)=\inf\biggl\{t:\int_0^tA_1^2(s,\xi)B^{-2}(s,\xi)\,ds=H\biggr\},\\ \delta_H(\xi)=H^{-1}\int_0^{\tau_H(\xi)}B^{-2}(t,\xi)A_1(t,\xi)[d\xi_t-A_0(t,\xi)dt], \end{gather*} in the class of $\mathscr D_H$-unbiased sequential estimation procedures satisfying the conditions \begin{gather*} \mathbf P\biggl\{\int_0^{\tau} A_1^2(t,\xi)B^{-2}(t,\xi)\,dt<\infty \biggr\}= \mathbf P\biggl\{\int_0^{\tau} A_1^2(t,w)B^{-2}(t,w)\,dt<\infty \biggr\}=1,\\ \mathbf E|\delta(\xi)|^{\alpha}<\infty,\qquad \mathbf E\int_0^\tau A_1^2(t,\xi)B^{-2}(t,\xi)\,dt\le H, \end{gather*} is optimal in the following sense: $$ \mathbf E|\delta_H(\xi)-\theta|^{\alpha}\le\mathbf E|\delta(\xi)-\theta|^{\alpha},\qquad \alpha\ge 1. $$ In the case of nonlinear relationship between the trend parameter and parameter $\theta$ the sequential estimation procedure $D_H=D(\tau_H,\delta_H)$ is asymptotically optimal when $H\to\infty$.
@article{TVP_1981_26_3_a16,
     author = {M. S. Tihov},
     title = {On the sequential estimation of the trend parameter for a~diffusion-type process with quadratic and non-quadratic loss functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {619--626},
     year = {1981},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a16/}
}
TY  - JOUR
AU  - M. S. Tihov
TI  - On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 619
EP  - 626
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a16/
LA  - ru
ID  - TVP_1981_26_3_a16
ER  - 
%0 Journal Article
%A M. S. Tihov
%T On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 619-626
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a16/
%G ru
%F TVP_1981_26_3_a16
M. S. Tihov. On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 619-626. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a16/