On the determination of a convolution of identical distribution functions by its values on halfline
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 610-611 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that if a convolution of identical distribution functions coincides with the normal distribution function on a halfline then the convolution coincides with the normal distribution finction everywhere. Some other results of the analogous type is presented too.
@article{TVP_1981_26_3_a14,
     author = {A. N. Titov},
     title = {On the determination of a~convolution of identical distribution functions by its values on halfline},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--611},
     year = {1981},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/}
}
TY  - JOUR
AU  - A. N. Titov
TI  - On the determination of a convolution of identical distribution functions by its values on halfline
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 610
EP  - 611
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/
LA  - ru
ID  - TVP_1981_26_3_a14
ER  - 
%0 Journal Article
%A A. N. Titov
%T On the determination of a convolution of identical distribution functions by its values on halfline
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 610-611
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/
%G ru
%F TVP_1981_26_3_a14
A. N. Titov. On the determination of a convolution of identical distribution functions by its values on halfline. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 610-611. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/