On the determination of a convolution of identical distribution functions by its values on halfline
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 610-611
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that if a convolution of identical distribution functions coincides with the normal distribution function on a halfline then the convolution coincides with the normal distribution finction everywhere. Some other results of the analogous type is presented too.
@article{TVP_1981_26_3_a14,
author = {A. N. Titov},
title = {On the determination of a~convolution of identical distribution functions by its values on halfline},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {610--611},
year = {1981},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/}
}
TY - JOUR AU - A. N. Titov TI - On the determination of a convolution of identical distribution functions by its values on halfline JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 610 EP - 611 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/ LA - ru ID - TVP_1981_26_3_a14 ER -
A. N. Titov. On the determination of a convolution of identical distribution functions by its values on halfline. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 610-611. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a14/