Limit theorems for the processes of diffusion in $R^m$
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 597-606

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_t^{(n)}$ ($n=0,1,\dots$) be a sequence of solutions of stochastic differential equations $$ d\xi_t^{(n)}=\alpha_t^{(n)}(\xi^{(n)})dt+\beta_t(\xi^{(n)})dw_t,\qquad \xi_0^{(n)}=\xi_0,\ 0\le t\le T,\ n=0,1,\dots $$ In the paper we study the conditions which are sufficient for $$ \lim_{n\to\infty}\mathbf M|\xi_t^{(n)}-\xi_t^{(0)}|^2=0,\qquad t\le T, $$ or for $$ \lim_{n\to\infty}\mathbf M\biggl|\int_0^t\alpha_s^{(n)}(\eta)\,ds- \int_0^t\alpha_s^{(0)}(\eta)\,ds\biggr|^2=0,\qquad t\le T, $$ where $\eta_t$ is the solution of an equation $$ \alpha\eta_t=\beta_t(\eta)\,dw_t,\qquad \eta_0=\xi_0,\qquad t\le T. $$
@article{TVP_1981_26_3_a12,
     author = {S. I. Pisanec},
     title = {Limit theorems for the processes of diffusion in $R^m$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--606},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a12/}
}
TY  - JOUR
AU  - S. I. Pisanec
TI  - Limit theorems for the processes of diffusion in $R^m$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 597
EP  - 606
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a12/
LA  - ru
ID  - TVP_1981_26_3_a12
ER  - 
%0 Journal Article
%A S. I. Pisanec
%T Limit theorems for the processes of diffusion in $R^m$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 597-606
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a12/
%G ru
%F TVP_1981_26_3_a12
S. I. Pisanec. Limit theorems for the processes of diffusion in $R^m$. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 597-606. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a12/