The laws of large numbers for identically distributed Banach space valued random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 584-590

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $0\alpha2$ and let $B_{\alpha}$ be an arbitrary Banach space if $0\alpha\le 1$ and $B_{\alpha}$ be an $\alpha$-type space if $1\alpha2$ (definition of $\alpha$-type space see [1]); let $B_{\alpha}$ be separable when $\alpha\ge 1$. Without loss of generality we suppose that $\mathbf EX=0$ if $\mathbf E\|X\|\infty$ where $X$ is Banach space valued random variable. Theorem.{\it Let $0\alpha2$ and $\{X_n\}$ be a sequence of independent identically distributed $B_{\alpha}$-valued random variables, $S_n=X_1+\dots+X_n$. The following conditions are equivalent.} I. $\mathbf E\|X_1\|^\alpha\infty$. II. $\|n^{-1/\alpha}S_n\|\to 0$ a. s., $n\to\infty$. III. $\mathbf E\|S_n\|^{\alpha}=o(n)$, $n\to\infty$. IV. $\displaystyle\sum_{n=1}^{\infty} n^{-1}\mathbf P\{\|S_n\|>\varepsilon n^{1/\alpha}\}\infty$ for every $\varepsilon>0$.
@article{TVP_1981_26_3_a10,
     author = {T. A. Azlarov and N. A. Volodin},
     title = {The laws of large numbers for identically distributed {Banach} space valued random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {584--590},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/}
}
TY  - JOUR
AU  - T. A. Azlarov
AU  - N. A. Volodin
TI  - The laws of large numbers for identically distributed Banach space valued random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 584
EP  - 590
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/
LA  - ru
ID  - TVP_1981_26_3_a10
ER  - 
%0 Journal Article
%A T. A. Azlarov
%A N. A. Volodin
%T The laws of large numbers for identically distributed Banach space valued random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 584-590
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/
%G ru
%F TVP_1981_26_3_a10
T. A. Azlarov; N. A. Volodin. The laws of large numbers for identically distributed Banach space valued random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 584-590. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/