The laws of large numbers for identically distributed Banach space valued random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 584-590
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $0\alpha2$ and let $B_{\alpha}$ be an arbitrary Banach space if $0\alpha\le 1$ and $B_{\alpha}$ be an $\alpha$-type space if $1\alpha2$ (definition of $\alpha$-type space see [1]); let $B_{\alpha}$ be separable when $\alpha\ge 1$. Without loss of generality we suppose that $\mathbf EX=0$ if $\mathbf E\|X\|\infty$ where $X$ is Banach space valued random variable.
Theorem.{\it Let $0\alpha2$ and $\{X_n\}$ be a sequence of independent identically distributed $B_{\alpha}$-valued random variables, $S_n=X_1+\dots+X_n$. The following conditions are equivalent.}
I.   $\mathbf E\|X_1\|^\alpha\infty$.
II.  $\|n^{-1/\alpha}S_n\|\to 0$ a. s., $n\to\infty$.
III. $\mathbf E\|S_n\|^{\alpha}=o(n)$, $n\to\infty$.
IV.  $\displaystyle\sum_{n=1}^{\infty} n^{-1}\mathbf P\{\|S_n\|>\varepsilon n^{1/\alpha}\}\infty$ 
for every $\varepsilon>0$.
			
            
            
            
          
        
      @article{TVP_1981_26_3_a10,
     author = {T. A. Azlarov and N. A. Volodin},
     title = {The laws of large numbers for identically distributed {Banach} space valued random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {584--590},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/}
}
                      
                      
                    TY - JOUR AU - T. A. Azlarov AU - N. A. Volodin TI - The laws of large numbers for identically distributed Banach space valued random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 584 EP - 590 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/ LA - ru ID - TVP_1981_26_3_a10 ER -
%0 Journal Article %A T. A. Azlarov %A N. A. Volodin %T The laws of large numbers for identically distributed Banach space valued random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 1981 %P 584-590 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/ %G ru %F TVP_1981_26_3_a10
T. A. Azlarov; N. A. Volodin. The laws of large numbers for identically distributed Banach space valued random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 584-590. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a10/
