Random walks on the semi-axis. II.~Limit distributions of boundary functionals
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 464-479

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some limit theorems for the joint distributions of values $\tau_z,x_{\tau_z},i_{\tau_z}(z\to\infty)$, where $\tau_z=\inf\{t\colon x_t\ge z\}$ and $(i_t,x_t)$, $t\ge 0$, is the homogeneous Markov–Feller process in the phase space $\{1,\dots,d\}\times[0,\infty)$ which is additive in the second component and has no negative jumps.
@article{TVP_1981_26_3_a1,
     author = {V. M. \v{S}urenkov},
     title = {Random walks on the semi-axis. {II.~Limit} distributions of boundary functionals},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {464--479},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/}
}
TY  - JOUR
AU  - V. M. Šurenkov
TI  - Random walks on the semi-axis. II.~Limit distributions of boundary functionals
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 464
EP  - 479
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/
LA  - ru
ID  - TVP_1981_26_3_a1
ER  - 
%0 Journal Article
%A V. M. Šurenkov
%T Random walks on the semi-axis. II.~Limit distributions of boundary functionals
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 464-479
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/
%G ru
%F TVP_1981_26_3_a1
V. M. Šurenkov. Random walks on the semi-axis. II.~Limit distributions of boundary functionals. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 464-479. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/