Random walks on the semi-axis. II.~Limit distributions of boundary functionals
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 464-479
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove some limit theorems for the joint distributions of values $\tau_z,x_{\tau_z},i_{\tau_z}(z\to\infty)$, where $\tau_z=\inf\{t\colon x_t\ge z\}$ and $(i_t,x_t)$, $t\ge 0$, is the homogeneous Markov–Feller process in the phase space $\{1,\dots,d\}\times[0,\infty)$ which is additive in the second component and has no negative jumps.
			
            
            
            
          
        
      @article{TVP_1981_26_3_a1,
     author = {V. M. \v{S}urenkov},
     title = {Random walks on the semi-axis. {II.~Limit} distributions of boundary functionals},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {464--479},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/}
}
                      
                      
                    TY - JOUR AU - V. M. Šurenkov TI - Random walks on the semi-axis. II.~Limit distributions of boundary functionals JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 464 EP - 479 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/ LA - ru ID - TVP_1981_26_3_a1 ER -
V. M. Šurenkov. Random walks on the semi-axis. II.~Limit distributions of boundary functionals. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 464-479. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a1/
