On the asymptotic behaviour of one-sided large deviation probabilities
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 369-372
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,X_2,\dots$ be i. i. d. random variables,
$$
\mathbf EX_1=0,\qquad F(x)=\mathbf P\{X_1\},\qquad S_n=X_1+\dots+X_n
$$
We prove that if for $x\to\infty$
$$
1-F(x)\thicksim x^{-\alpha}h(x),\qquad \alpha>1,
$$
where $h(x)$ is a slowly varying function, then
$$
\mathbf P\{S_n\ge x\}\thicksim n(1-F(x))\qquad\text{for}\ n\to\infty\ \text{and}\ \liminf_{n\to\infty}x/n>0.
$$
            
            
            
          
        
      @article{TVP_1981_26_2_a9,
     author = {S. V. Nagaev},
     title = {On the asymptotic behaviour of one-sided large deviation probabilities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {369--372},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a9/}
}
                      
                      
                    S. V. Nagaev. On the asymptotic behaviour of one-sided large deviation probabilities. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 369-372. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a9/
