On the detection of > of Wiener process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 362-368
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The drift of a multidimensional Wiener process equals to $\theta_0$ on a time interval $[0,t_0]$ and equals to $\theta_1$ on $(t_0,T]$, the values $\theta_0$, $\theta_1$ and $t_0$ are unknown. We assume that the condition $\alpha T\le t_0\le(1-\alpha)T$ holds where the number $\alpha\in(0,1/2)$.
The maximum likelihood estimates of the unknown parameters $t_0/T$, $\theta_0$ and $\theta_1$ are given and their consistency is proved. We study also the test for checking the hypothesis $H_0\colon\theta_0=\theta_1$ against the alternative $H_1\colon\theta_0\ne\theta_1$ which is based on the likelihood function. An asymptotic expression for the probability of the error of the first kind is obtained.
			
            
            
            
          
        
      @article{TVP_1981_26_2_a8,
     author = {L. Yu. Vostrikova},
     title = {On the detection of <<discordance>> of {Wiener} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {362--368},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a8/}
}
                      
                      
                    L. Yu. Vostrikova. On the detection of <> of Wiener process. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 362-368. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a8/ 
