On the detection of > of Wiener process
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 362-368
Cet article a éte moissonné depuis la source Math-Net.Ru
The drift of a multidimensional Wiener process equals to $\theta_0$ on a time interval $[0,t_0]$ and equals to $\theta_1$ on $(t_0,T]$, the values $\theta_0$, $\theta_1$ and $t_0$ are unknown. We assume that the condition $\alpha T\le t_0\le(1-\alpha)T$ holds where the number $\alpha\in(0,1/2)$. The maximum likelihood estimates of the unknown parameters $t_0/T$, $\theta_0$ and $\theta_1$ are given and their consistency is proved. We study also the test for checking the hypothesis $H_0\colon\theta_0=\theta_1$ against the alternative $H_1\colon\theta_0\ne\theta_1$ which is based on the likelihood function. An asymptotic expression for the probability of the error of the first kind is obtained.
@article{TVP_1981_26_2_a8,
author = {L. Yu. Vostrikova},
title = {On the detection of <<discordance>> of {Wiener} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {362--368},
year = {1981},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a8/}
}
L. Yu. Vostrikova. On the detection of <> of Wiener process. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 362-368. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a8/