Upper bounds for the concentration function in a Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 335-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New bounds (analogous to the bounds obtained by Kolmogorov, Rogozin and Esseen) are derived for the concentration function of the sums of independent random variables with values in a Hilbert space. In particular, the absolute constants used in the estimates don't depend on the dimension in the finite-dimensional space. Further, some limit theorems for the concentration function and some estimates for the concentration functions of infinitely divisible distributions are given.
@article{TVP_1981_26_2_a6,
     author = {G. Siegel},
     title = {Upper bounds for the concentration function in {a~Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {335--349},
     year = {1981},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a6/}
}
TY  - JOUR
AU  - G. Siegel
TI  - Upper bounds for the concentration function in a Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 335
EP  - 349
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a6/
LA  - ru
ID  - TVP_1981_26_2_a6
ER  - 
%0 Journal Article
%A G. Siegel
%T Upper bounds for the concentration function in a Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 335-349
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a6/
%G ru
%F TVP_1981_26_2_a6
G. Siegel. Upper bounds for the concentration function in a Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 335-349. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a6/