Heavy traffic approximation for two-phase queueing system
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 302-320
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate the heavy traffic approximation for two-phase queueing system with unbounded queues at each phase. It is proved that the limit distribution function of waiting times is the solution of an elliptic differential equation in a plane angle with an oblique derivative on the boundary. This solution may be obtained by means of reducing to some boundary problem for a function of a complex variable.
			
            
            
            
          
        
      @article{TVP_1981_26_2_a4,
     author = {F. I. Karpelevi\v{c} and A. Ya. Kreǐnin},
     title = {Heavy traffic approximation for two-phase queueing system},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {302--320},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a4/}
}
                      
                      
                    TY - JOUR AU - F. I. Karpelevič AU - A. Ya. Kreǐnin TI - Heavy traffic approximation for two-phase queueing system JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 302 EP - 320 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a4/ LA - ru ID - TVP_1981_26_2_a4 ER -
F. I. Karpelevič; A. Ya. Kreǐnin. Heavy traffic approximation for two-phase queueing system. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 302-320. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a4/
