The information inequality for operator equations in Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 377-384

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an inequality for the accuracy of arbitrary approximate solutions of operator equations of the first kind in Hilbert space with stochastic errors in the data. This inequality is analogous to the well-known Rao–Cramer inequality.
@article{TVP_1981_26_2_a11,
     author = {A. M. Fedotov},
     title = {The information inequality for operator equations in {Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {377--384},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a11/}
}
TY  - JOUR
AU  - A. M. Fedotov
TI  - The information inequality for operator equations in Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 377
EP  - 384
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a11/
LA  - ru
ID  - TVP_1981_26_2_a11
ER  - 
%0 Journal Article
%A A. M. Fedotov
%T The information inequality for operator equations in Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 377-384
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a11/
%G ru
%F TVP_1981_26_2_a11
A. M. Fedotov. The information inequality for operator equations in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 377-384. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a11/