The information inequality for operator equations in Hilbert space
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 377-384
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct an inequality for the accuracy of arbitrary approximate solutions of operator equations of the first kind in Hilbert space with stochastic errors in the data. This inequality is analogous to the well-known Rao–Cramer inequality.
			
            
            
            
          
        
      @article{TVP_1981_26_2_a11,
     author = {A. M. Fedotov},
     title = {The information inequality for operator equations in {Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {377--384},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a11/}
}
                      
                      
                    A. M. Fedotov. The information inequality for operator equations in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 377-384. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a11/
