Necessary and sufficient conditions for the functional central limit theorem for semimartingales
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 132-137
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose that $X^n$, $n\ge 1$, is a family of semimartingales with the triplets of local characteristics $(B^n,\langle X^{nc}\rangle,\nu^n)$ and $M$ is a continuous Gaussian martingale. We find conditions which are necessary and sufficient for the weak convergence $X^n\overset{\mathscr D}{\to}M$ ($n\to\infty$).
			
            
            
            
          
        
      @article{TVP_1981_26_1_a9,
     author = {R. \v{S}. Lipcer and A. N. \v{S}iryaev},
     title = {Necessary and sufficient conditions for the functional central limit theorem for semimartingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {132--137},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a9/}
}
                      
                      
                    TY - JOUR AU - R. Š. Lipcer AU - A. N. Širyaev TI - Necessary and sufficient conditions for the functional central limit theorem for semimartingales JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1981 SP - 132 EP - 137 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a9/ LA - ru ID - TVP_1981_26_1_a9 ER -
%0 Journal Article %A R. Š. Lipcer %A A. N. Širyaev %T Necessary and sufficient conditions for the functional central limit theorem for semimartingales %J Teoriâ veroâtnostej i ee primeneniâ %D 1981 %P 132-137 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a9/ %G ru %F TVP_1981_26_1_a9
R. Š. Lipcer; A. N. Širyaev. Necessary and sufficient conditions for the functional central limit theorem for semimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 132-137. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a9/
