Cylindrical measures and $p$-summing operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 59-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(E,t)$ be a locally convex space. In terms of $p$-summing operators and tensor products we obtain sufficient conditions for the existence of a topology $\tau$ on $E$ such that the continuity of any linear operator $\Phi\colon(E,\tau)\to S(\Omega)$ is equivalent to $\mathscr E$-tightness (i. e. cylindrical concentration on the equicontinuous sets of $(E,t)'$) of corresponding cylindrical measure $X$ on $(E,t)'$.
@article{TVP_1981_26_1_a4,
     author = {Ju. N. Vladimirskiǐ},
     title = {Cylindrical measures and $p$-summing operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a4/}
}
TY  - JOUR
AU  - Ju. N. Vladimirskiǐ
TI  - Cylindrical measures and $p$-summing operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 59
EP  - 72
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a4/
LA  - ru
ID  - TVP_1981_26_1_a4
ER  - 
%0 Journal Article
%A Ju. N. Vladimirskiǐ
%T Cylindrical measures and $p$-summing operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 59-72
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a4/
%G ru
%F TVP_1981_26_1_a4
Ju. N. Vladimirskiǐ. Cylindrical measures and $p$-summing operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a4/