Cylindrical measures and $p$-summing operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 59-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(E,t)$ be a locally convex space. In terms of $p$-summing operators and tensor products we obtain sufficient conditions for the existence of a topology $\tau$ on $E$ such that the continuity of any linear operator
$\Phi\colon(E,\tau)\to S(\Omega)$ is equivalent to $\mathscr E$-tightness (i. e. cylindrical concentration on the equicontinuous sets of $(E,t)'$) of corresponding cylindrical measure $X$ on $(E,t)'$.
@article{TVP_1981_26_1_a4,
author = {Ju. N. Vladimirskiǐ},
title = {Cylindrical measures and $p$-summing operators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {59--72},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a4/}
}
Ju. N. Vladimirskiǐ. Cylindrical measures and $p$-summing operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a4/