On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 156-160

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. If $\xi_1,\xi_2,\dots$ is a sequence of non-degenerate identically distributed independent random variables with values in $Z^2$, then $$ \sup_{m\in Z^2}\mathbf P(\xi_1+\dots+\xi_n=m)\le Cn^{-1}\Delta^{-1/2}, $$ where $C$ is an absolute constant, $\Delta=(P_L-P_0)(1-P_L)$, $$ P_0=\max_{m\in Z^2}\mathbf P\{\xi=x\},\qquad P_L=\max_H\mathbf P\{\xi\in H\}, $$ $H$ is a set of points belonging to some straight line.
@article{TVP_1981_26_1_a13,
     author = {A. G. Postnikov and A. A. Judin},
     title = {On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {156--160},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a13/}
}
TY  - JOUR
AU  - A. G. Postnikov
AU  - A. A. Judin
TI  - On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 156
EP  - 160
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a13/
LA  - ru
ID  - TVP_1981_26_1_a13
ER  - 
%0 Journal Article
%A A. G. Postnikov
%A A. A. Judin
%T On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 156-160
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a13/
%G ru
%F TVP_1981_26_1_a13
A. G. Postnikov; A. A. Judin. On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 156-160. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a13/