Some characteristics of $n$-times convolutions of distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 152-156
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak A$ be the set of symmetric distributions, $\mathfrak M$ – the set of distributions with the median zero, $F^n$ – $n$-times convolution of $F$ with itself, $E_0$ – the distribution corresponding
to the unit mass at 0. For $F,G\in\mathfrak M$ let us define
\begin{gather*}
|F-G|=\sup_x|f((-\infty,x])-G((-\infty,x])|,\\
\operatorname{exp}(n(F-E_0))=\sum_{s=0}^\infty e^{-n}\frac{n^s}{s!}F^s.
\end{gather*}
We prove that
\begin{gather*}
c_1n^{-1/2}\le\sup_{F\in\mathfrak M}|F^n-F^{n+1}|\le c_2n^{-1/2},\\
c_3n^{-1/2}\le\sup_{F\in\mathfrak A}|F^n-\operatorname{exp}(n(F-E_0))|\le c_4n^{-1/2}.
\end{gather*}
@article{TVP_1981_26_1_a12,
author = {A. Yu. Zaǐcev},
title = {Some characteristics of $n$-times convolutions of distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {152--156},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a12/}
}
A. Yu. Zaǐcev. Some characteristics of $n$-times convolutions of distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 152-156. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a12/