On the rate of convergence in the strong law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 138-143
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_1,X_2,\dots$ be independent random variables, $S_n=X_1+\dots+X_n$, $\{b_n\}_{n=1}^\infty$ be a positive nondecreasing sequence, $\{n_i\}_{i=1}^\infty$ be an increasing sequence of integers satisfying some conditions. We obtain relations between $\displaystyle\mathbf P\{\sup_{k\ge n_m}S_k/b_k\ge\varepsilon\}$ and $$ Q_m(\varepsilon)=\mathbf P\{S_{n_m}\ge \varepsilon b_{n_m}\}+\sum_{k=m}^\infty\mathbf P\{S_{n_{k+1}}-S_{n_k}\ge\varepsilon b_{n_{k+1}}\},\qquad\varepsilon>0,m\ge 1. $$
@article{TVP_1981_26_1_a10,
author = {L. V. Rozovskiǐ},
title = {On the rate of convergence in the strong law of large numbers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {138--143},
year = {1981},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a10/}
}
L. V. Rozovskiǐ. On the rate of convergence in the strong law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 138-143. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a10/