On the rate of convergence in the strong law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 138-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,X_2,\dots$ be independent random variables, $S_n=X_1+\dots+X_n$, $\{b_n\}_{n=1}^\infty$ be a positive nondecreasing sequence, $\{n_i\}_{i=1}^\infty$ be an increasing sequence of integers satisfying some conditions. We obtain relations between $\displaystyle\mathbf P\{\sup_{k\ge n_m}S_k/b_k\ge\varepsilon\}$ and $$ Q_m(\varepsilon)=\mathbf P\{S_{n_m}\ge \varepsilon b_{n_m}\}+\sum_{k=m}^\infty\mathbf P\{S_{n_{k+1}}-S_{n_k}\ge\varepsilon b_{n_{k+1}}\},\qquad\varepsilon>0,m\ge 1. $$
@article{TVP_1981_26_1_a10,
     author = {L. V. Rozovskiǐ},
     title = {On the rate of convergence in the strong law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {138--143},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a10/}
}
TY  - JOUR
AU  - L. V. Rozovskiǐ
TI  - On the rate of convergence in the strong law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 138
EP  - 143
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a10/
LA  - ru
ID  - TVP_1981_26_1_a10
ER  - 
%0 Journal Article
%A L. V. Rozovskiǐ
%T On the rate of convergence in the strong law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 138-143
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a10/
%G ru
%F TVP_1981_26_1_a10
L. V. Rozovskiǐ. On the rate of convergence in the strong law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 138-143. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a10/