On the rate of convergence in the central limit theorem for weakly dependent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 4, pp. 800-818

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,X_2,\dots$ be a stationary sequence of random variables with $\mathbf EX_1=0$, $\mathbf E|X_1|^3\infty$. Let \begin{gather*} \sigma^2_n=\mathbf E\biggl(\sum_{j=1}^n X_j\biggr)^2,\qquad F_n(x)=\mathbf P\biggl\{\sigma_n^{-1}\sum_{j=1}^n X_j\biggr\}, \\ \Phi(x)=(2\pi)^{-1/2}\int_{-\infty}^x e^{-y^2/2}\,dy,\qquad \Delta_n=\sup|F_n(x)-\Phi(x)|. \end{gather*} We prove that if the sequence $X_n$ satisfies a strong mixing condition and if its mixing coefficient decreases exponentially then $$ \Delta_n=O(n^{-1/2}\ln^2n). $$ For the case of $m$-dependent variables we prove that $$ \Delta_n=O(m^2n^{-1/2}). $$
@article{TVP_1980_25_4_a9,
     author = {A. N. Tihomirov},
     title = {On the rate of convergence in the central limit theorem for weakly dependent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {800--818},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_4_a9/}
}
TY  - JOUR
AU  - A. N. Tihomirov
TI  - On the rate of convergence in the central limit theorem for weakly dependent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 800
EP  - 818
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_4_a9/
LA  - ru
ID  - TVP_1980_25_4_a9
ER  - 
%0 Journal Article
%A A. N. Tihomirov
%T On the rate of convergence in the central limit theorem for weakly dependent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 800-818
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_4_a9/
%G ru
%F TVP_1980_25_4_a9
A. N. Tihomirov. On the rate of convergence in the central limit theorem for weakly dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 4, pp. 800-818. http://geodesic.mathdoc.fr/item/TVP_1980_25_4_a9/