A functional central limit theorem for semimartingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 4, pp. 683-703
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X^n$, $n\geqslant 1$, be a sequence of semimartingales with triplets of local characteristics
$T^n=(B^n,\langle X^{cn}\rangle,\nu^n)$ and let $X$ be a continuous Gaussian martingale with
a triplet $T=(0,\langle X\rangle,0)$. We give conditions on the convergence of the triplets $T^n$ to
$T$ which are sufficient for the weak convergence of the distributions of $X^n$ to the distribution
of $X$ and for the weak convergence of the finite-dimensional distributions of $X^n$ to
the corresponding finite-dimensional distributions of $X$.
@article{TVP_1980_25_4_a1,
author = {R. \v{S}. Lip\v{c}er and A. N. \v{S}iryaev},
title = {A functional central limit theorem for semimartingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {683--703},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_4_a1/}
}
R. Š. Lipčer; A. N. Širyaev. A functional central limit theorem for semimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 4, pp. 683-703. http://geodesic.mathdoc.fr/item/TVP_1980_25_4_a1/