On the second order asymptotically minimax estimates
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 561-576
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_n$ be a sequence of independent random variables having Gaussian
distribution $\mathscr N(m,\sigma^2)$ with $\sigma^2$ known and unknown mean $m$ subjected
to the restriction $|m|$. For an arbitrary estimate $T$ ($X_1,\dots,X_n$) and nonnegative
even nondecreasing on $R^+$ loss function $l(x)$ satisfying the condition
$$
\int e^{-x^2/2}x^2l(x)\,dx\infty
$$
we consider the corresponding risk
$$
R(T,l,m)=\mathbf E_ml\biggl(\frac{\sqrt{n}}{\sigma}(T-m)\biggr).
$$
It is shown that for $\varepsilon=\sigma/a\sqrt{n}\to 0$ the following asymptotic expansion for the
minimax risk holds:
$$
\inf_T\sup_{|m|}R(T,l,m)=R_0-1/2R_1\pi^2\varepsilon^2+o(\varepsilon^2),
$$
where
$$
R_0=\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}l(x)\,dx,\qquad R_1=\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}(x^2-1)l(x)\,dx.
$$
Different estimates are exhibited which are second order asymptotically minimax simultaneously
for a large class of loss functions.
@article{TVP_1980_25_3_a9,
author = {B. Ya. Levit},
title = {On the second order asymptotically minimax estimates},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {561--576},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a9/}
}
B. Ya. Levit. On the second order asymptotically minimax estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 561-576. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a9/