On the second order asymptotically minimax estimates
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 561-576

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be a sequence of independent random variables having Gaussian distribution $\mathscr N(m,\sigma^2)$ with $\sigma^2$ known and unknown mean $m$ subjected to the restriction $|m|$. For an arbitrary estimate $T$ ($X_1,\dots,X_n$) and nonnegative even nondecreasing on $R^+$ loss function $l(x)$ satisfying the condition $$ \int e^{-x^2/2}x^2l(x)\,dx\infty $$ we consider the corresponding risk $$ R(T,l,m)=\mathbf E_ml\biggl(\frac{\sqrt{n}}{\sigma}(T-m)\biggr). $$ It is shown that for $\varepsilon=\sigma/a\sqrt{n}\to 0$ the following asymptotic expansion for the minimax risk holds: $$ \inf_T\sup_{|m|}R(T,l,m)=R_0-1/2R_1\pi^2\varepsilon^2+o(\varepsilon^2), $$ where $$ R_0=\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}l(x)\,dx,\qquad R_1=\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}(x^2-1)l(x)\,dx. $$ Different estimates are exhibited which are second order asymptotically minimax simultaneously for a large class of loss functions.
@article{TVP_1980_25_3_a9,
     author = {B. Ya. Levit},
     title = {On the second order asymptotically minimax estimates},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {561--576},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a9/}
}
TY  - JOUR
AU  - B. Ya. Levit
TI  - On the second order asymptotically minimax estimates
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 561
EP  - 576
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a9/
LA  - ru
ID  - TVP_1980_25_3_a9
ER  - 
%0 Journal Article
%A B. Ya. Levit
%T On the second order asymptotically minimax estimates
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 561-576
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a9/
%G ru
%F TVP_1980_25_3_a9
B. Ya. Levit. On the second order asymptotically minimax estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 561-576. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a9/