A criterion of the Markov property for continuous semi-Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 535-548
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a continuous semi-Markov process on a metric space $X$ and investigate
the operator
$$
A_\lambda(\varphi|x)=\lim_{r\to 0}\frac{1}{m_r(x)}\biggl(\int_{R_+\times X}e^{-\lambda t}\varphi(x_1)F_{\tau_r}(dt\times dx_1|x)-\varphi(x)\biggr),
$$
where $m_r(x)=\int_0^\infty tF_{\tau_r}(dt\times X)$, $F_{\tau_r}(dt\times dx_1|x)$ is the distribution of the time and point of the first exit from the spherical neighbourhood of the initial point $x$, $r$ is the
radius of this neighbourhood, $\lambda\geqslant 0$, and $\varphi$ is a measurable bounded function. Under some regularity conditions the semi-Markov process is a Markov process iff
$$
A_\lambda(\varphi|x)=A_0(\varphi|x)-\lambda b(x)\varphi(x),\qquad\text{where}\quad0\leqslant b(x)\leqslant 1.
$$
@article{TVP_1980_25_3_a7,
author = {B. P. Harlamov},
title = {A criterion of the {Markov} property for continuous {semi-Markov} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {535--548},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a7/}
}
B. P. Harlamov. A criterion of the Markov property for continuous semi-Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 535-548. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a7/